Package: logisticPCA (via r-universe)

September 7, 2024
Type Package
Title Binary Dimensionality Reduction
Version 0.2.9000
Date 2016-03-13
NeedsCompilation yes
ByteCompile yes
Author Andrew J. Landgraf
Maintainer Andrew J. Landgraf <andland@gmail.com></andland@gmail.com>
Description Dimensionality reduction techniques for binary data including logistic PCA.
License MIT + file LICENSE
LazyData true
<pre>URL https://github.com/andland/logisticPCA</pre>
Imports ggplot2
Suggests RSpectra (>= 0.10-0), testthat (>= 0.11.0), knitr, rmarkdown
VignetteBuilder knitr
RoxygenNote 7.1.0
Repository https://andland.r-universe.dev
RemoteUrl https://github.com/andland/logisticpca
RemoteRef HEAD
RemoteSha 26363c9695ceaa4cf16d223d47ae9ee41115815d
Contents
logisticPCA-package convexLogisticPCA cv.clpca cv.lpca cv.lsvd

2 convexLogisticPCA

fitted.lpca	1
fitted.lsvd	8
house_votes84	9
inv.logit.mat	9
logisticPCA	10
logisticSVD	12
log_like_Bernoulli	14
plot.clpca	14
plot.cv.lpca	15
plot.lpca	16
plot.lsvd	17
predict.clpca	17
predict.lpca	18
predict.lsvd	19
project.Fantope	21
	22

logisticPCA-package

logisticPCA-package

Description

Index

Dimension reduction techniques for binary data including logistic PCA

Author(s)

Andrew J. Landgraf

 ${\tt convexLogisticPCA}$

Convex Logistic Principal Component Analysis

Description

Dimensionality reduction for binary data by extending Pearson's PCA formulation to minimize Binomial deviance. The convex relaxation to projection matrices, the Fantope, is used.

Usage

```
convexLogisticPCA(
    x,
    k = 2,
    m = 4,
    quiet = TRUE,
    partial_decomp = FALSE,
    max_iters = 1000,
```

convexLogisticPCA 3

```
conv_criteria = 1e-06,
random_start = FALSE,
start_H,
mu,
main_effects = TRUE,
ss_factor = 4,
weights,
M
)
```

Arguments

x matrix with all binary entries

k number of principal components to returnm value to approximate the saturated model

quiet logical; whether the calculation should give feedback

partial_decomp logical; if TRUE, the function uses the RSpectra package to quickly initialize H

and project onto the Fantope when ncol(x) is large and k is small

max_iters number of maximum iterations

conv_criteria convergence criteria. The difference between average deviance in successive

iterations

random_start logical; whether to randomly inititalize the parameters. If FALSE, function will

use an eigen-decomposition as starting value

start_H starting value for the Fantope matrix

mu main_effects vector. Only used if main_effects = TRUE
main_effects logical; whether to include main effects in the model

ss_factor step size multiplier. Amount by which to multiply the step size. Quadratic con-

vergence rate can be proven for ss_factor = 1, but I have found higher values sometimes work better. The default is ss_factor = 4. If it is not converging,

try ss_factor = 1.

weights an optional matrix of the same size as the x with non-negative weights

M depricated. Use minstead

Value

An S3 object of class clpca which is a list with the following components:

mu the main effects

H a rank k Fantope matrix

U a ceiling(k)-dimentional orthonormal matrix with the loadings

PCs the princial component scores

m the parameter inputed

iters number of iterations required for convergence

4 cv.clpca

loss_trace the trace of the average negative log likelihood using the Fantope matrix proj_loss_trace

the trace of the average negative log likelihood using the projection matrix

prop_deviance_expl

the proportion of deviance explained by this model. If main_effects = TRUE, the null model is just the main effects, otherwise the null model estimates 0 for all natural parameters.

rank the rank of the Fantope matrix H

References

Landgraf, A.J. & Lee, Y., 2020. Dimensionality reduction for binary data through the projection of natural parameters. Journal of Multivariate Analysis, 180, p.104668. https://arxiv.org/abs/1510.06112 https://doi.org/10.1016/j.jmva.2020.104668

Examples

```
# construct a low rank matrix in the logit scale
rows = 100
cols = 10
set.seed(1)
mat_logit = outer(rnorm(rows), rnorm(cols))

# generate a binary matrix
mat = (matrix(runif(rows * cols), rows, cols) <= inv.logit.mat(mat_logit)) * 1.0

# run convex logistic PCA on it
clpca = convexLogisticPCA(mat, k = 1, m = 4)</pre>
```

cv.clpca

CV for convex logistic PCA

Description

Run cross validation on dimension and m for convex logistic PCA

Usage

```
cv.clpca(x, ks, ms = seq(2, 10, by = 2), folds = 5, quiet = TRUE, Ms, ...)
```

Arguments

X	matrix with all binary entries
ks	the different dimensions k to try
ms	the different approximations to the saturated model m to try
folds	if folds is a scalar, then it is the number of folds. If it is a vector, it should be

the same length as the number of rows in x

cv.lpca 5

quiet	logical; whether the function should display progress
Ms	depricated. Use ms instead
	Additional arguments passed to convexLogisticPCA

Value

A matrix of the CV negative log likelihood with k in rows and m in columns

Examples

```
# construct a low rank matrix in the logit scale
rows = 100
cols = 10
set.seed(1)
mat_logit = outer(rnorm(rows), rnorm(cols))

# generate a binary matrix
mat = (matrix(runif(rows * cols), rows, cols) <= inv.logit.mat(mat_logit)) * 1.0

## Not run:
negloglikes = cv.clpca(mat, ks = 1:9, ms = 3:6)
plot(negloglikes)

## End(Not run)</pre>
```

cv.lpca

CV for logistic PCA

Description

Run cross validation on dimension and m for logistic PCA

Usage

```
cv.lpca(x, ks, ms = seq(2, 10, by = 2), folds = 5, quiet = TRUE, Ms, ...)
```

Arguments

X	matrix with all binary entries
ks	the different dimensions k to try
ms	the different approximations to the saturated model m to try
folds	if folds is a scalar, then it is the number of folds. If it is a vector, it should be the same length as the number of rows in \boldsymbol{x}
quiet	logical; whether the function should display progress
Ms	depricated. Use ms instead
	Additional arguments passed to logisticPCA

6 cv.lsvd

Value

A matrix of the CV negative log likelihood with k in rows and m in columns

Examples

```
# construct a low rank matrix in the logit scale
rows = 100
cols = 10
set.seed(1)
mat_logit = outer(rnorm(rows), rnorm(cols))

# generate a binary matrix
mat = (matrix(runif(rows * cols), rows, cols) <= inv.logit.mat(mat_logit)) * 1.0

## Not run:
negloglikes = cv.lpca(mat, ks = 1:9, ms = 3:6)
plot(negloglikes)

## End(Not run)</pre>
```

cv.lsvd

CV for logistic SVD

Description

Run cross validation on dimension for logistic SVD

Usage

```
cv.lsvd(x, ks, folds = 5, quiet = TRUE, ...)
```

Arguments

x	matrix with all binary entries
ks	the different dimensions k to try
folds	if folds is a scalar, then it is the number of folds. If it is a vector, it should be the same length as the number of rows in x
quiet	logical; whether the function should display progress
	Additional arguments passed to logisticSVD

Value

A matrix of the CV negative log likelihood with k in rows

fitted.lpca 7

Examples

```
# construct a low rank matrix in the logit scale
rows = 100
cols = 10
set.seed(1)
mat_logit = outer(rnorm(rows), rnorm(cols))

# generate a binary matrix
mat = (matrix(runif(rows * cols), rows, cols) <= inv.logit.mat(mat_logit)) * 1.0

## Not run:
negloglikes = cv.lsvd(mat, ks = 1:9)
plot(negloglikes)

## End(Not run)</pre>
```

fitted.lpca

Fitted values using logistic PCA

Description

Fit a lower dimentional representation of the binary matrix using logistic PCA

Usage

```
## S3 method for class 'lpca'
fitted(object, type = c("link", "response"), ...)
```

Arguments

object logistic PCA object

type the type of fitting required. type = "link" gives output on the logit scale and type = "response" gives output on the probability scale

... Additional arguments

```
# construct a low rank matrix in the logit scale
rows = 100
cols = 10
set.seed(1)
mat_logit = outer(rnorm(rows), rnorm(cols))

# generate a binary matrix
mat = (matrix(runif(rows * cols), rows, cols) <= inv.logit.mat(mat_logit)) * 1.0

# run logistic PCA on it
lpca = logisticPCA(mat, k = 1, m = 4, main_effects = FALSE)</pre>
```

8 fitted.lsvd

```
# construct fitted probability matrix
fit = fitted(lpca, type = "response")
```

fitted.lsvd

Fitted values using logistic SVD

Description

Fit a lower dimentional representation of the binary matrix using logistic SVD

Usage

```
## S3 method for class 'lsvd'
fitted(object, type = c("link", "response"), ...)
```

Arguments

object logistic SVD object

type the type of fitting required. type = "link" gives output on the logit scale and type = "response" gives output on the probability scale

... Additional arguments

```
# construct a low rank matrix in the logit scale
rows = 100
cols = 10
set.seed(1)
mat_logit = outer(rnorm(rows), rnorm(cols))

# generate a binary matrix
mat = (matrix(runif(rows * cols), rows, cols) <= inv.logit.mat(mat_logit)) * 1.0

# run logistic SVD on it
lsvd = logisticSVD(mat, k = 1, main_effects = FALSE, partial_decomp = FALSE)

# construct fitted probability matrix
fit = fitted(lsvd, type = "response")</pre>
```

house_votes84

house_votes84

United States Congressional Voting Records 1984

Description

This data set includes votes for each of the U.S. House of Representatives Congressmen on the 16 key votes identified by the CQA. The CQA lists nine different types of votes: voted for, paired for, and announced for (these three simplified to yea), voted against, paired against, and announced against (these three simplified to nay), voted present, voted present to avoid conflict of interest, and did not vote or otherwise make a position known (these three simplified to an unknown disposition).

Usage

house_votes84

Format

A matrix with all binary or missing entries. There are 435 rows corresponding members of congress and 16 columns representing the bills being voted on. The row names refer to the political party of the members of congress

Source

Congressional Quarterly Almanac, 98th Congress, 2nd session 1984, Volume XL: Congressional Quarterly Inc., Washington, D.C., 1985

Data converted to a matrix from:

Lichman, M. (2013). UCI Machine Learning Repository [http://archive.ics.uci.edu/ml]. Irvine, CA: University of California, School of Information and Computer Science.

Examples

```
data(house_votes84)
congress_lpca = logisticPCA(house_votes84, k = 2, m = 4)
```

inv.logit.mat

Inverse logit for matrices

Description

Apply the inverse logit function to a matrix, element-wise. It generalizes the inv.logit function from the gtools library to matrices

Usage

```
inv.logit.mat(x, min = 0, max = 1)
```

10 logisticPCA

Arguments

```
x matrixmin Lower end of logit intervalmax Upper end of logit interval
```

Examples

```
(mat = matrix(rnorm(10 * 5), nrow = 10, ncol = 5))
inv.logit.mat(mat)
```

logisticPCA

Logistic Principal Component Analysis

Description

Dimensionality reduction for binary data by extending Pearson's PCA formulation to minimize Binomial deviance

Usage

```
logisticPCA(
  Х,
 k = 2,
 m = 4,
 quiet = TRUE,
  partial_decomp = FALSE,
 max_iters = 1000,
  conv_criteria = 1e-05,
  random_start = FALSE,
  start_U,
  start_mu,
 main_effects = TRUE,
  validation,
 Μ,
 use_irlba
)
```

Arguments

```
x matrix with all binary entries
k number of principal components to return
m value to approximate the saturated model. If m = 0, m is solved for
quiet logical; whether the calculation should give feedback
partial_decomp logical; if TRUE, the function uses the RSpectra package to more quickly calculate the eigen-decomposition. This is usually faster than standard eigen-decomposition when ncol(x) > 100 and k is small
```

logisticPCA 11

max_iters number of maximum iterations

conv_criteria convergence criteria. The difference between average deviance in successive

iterations

random_start logical; whether to randomly inititalize the parameters. If FALSE, function will

use an eigen-decomposition as starting value

start_U starting value for the orthogonal matrix

start_mu starting value for mu. Only used if main_effects = TRUE
main_effects logical; whether to include main effects in the model

validation optional validation matrix. If supplied and m = 0, the validation data is used to

solve for m

M depricated. Use m instead

use_irlba depricated. Use partial_decomp instead

Value

An S3 object of class 1pca which is a list with the following components:

mu the main effects

U a k-dimentional orthonormal matrix with the loadings

PCs the princial component scores

m the parameter inputed or solved for

iters number of iterations required for convergence

loss_trace the trace of the average negative log likelihood of the algorithm. Should be

non-increasing

prop_deviance_expl

the proportion of deviance explained by this model. If main_effects = TRUE, the null model is just the main effects, otherwise the null model estimates 0 for

all natural parameters.

References

Landgraf, A.J. & Lee, Y., 2020. Dimensionality reduction for binary data through the projection of natural parameters. Journal of Multivariate Analysis, 180, p.104668. https://arxiv.org/abs/1510.06112 https://doi.org/10.1016/j.jmva.2020.104668

```
# construct a low rank matrix in the logit scale
rows = 100
cols = 10
set.seed(1)
mat_logit = outer(rnorm(rows), rnorm(cols))

# generate a binary matrix
mat = (matrix(runif(rows * cols), rows, cols) <= inv.logit.mat(mat_logit)) * 1.0</pre>
```

12 logisticSVD

```
# run logistic PCA on it
lpca = logisticPCA(mat, k = 1, m = 4, main_effects = FALSE)

# Logistic PCA likely does a better job finding latent features
# than standard PCA
plot(svd(mat_logit)$u[, 1], lpca$PCs[, 1])
plot(svd(mat_logit)$u[, 1], svd(mat)$u[, 1])
```

logisticSVD

Logistic Singular Value Decomposition

Description

Dimensionality reduction for binary data by extending SVD to minimize binomial deviance.

Usage

```
logisticSVD(
    x,
    k = 2,
    quiet = TRUE,
    max_iters = 1000,
    conv_criteria = 1e-05,
    random_start = FALSE,
    start_A,
    start_B,
    start_mu,
    partial_decomp = TRUE,
    main_effects = TRUE,
    use_irlba
)
```

Arguments

X	matrix with all binary entries
k	rank of the SVD
quiet	logical; whether the calculation should give feedback
max_iters	number of maximum iterations
conv_criteria	convergence criteria. The difference between average deviance in successive iterations
random_start	logical; whether to randomly inititalize the parameters. If FALSE, algorithm will use an SVD as starting value
start_A	starting value for the left singular vectors
start_B	starting value for the right singular vectors
start_mu	starting value for mu. Only used if main_effects = TRUE

logisticSVD 13

partial_decomp	logical; if TRUE, the function uses the RSpectra package to more quickly calculate the SVD. When the number of columns is small, the approximation may be less accurate and slower
main_effects	logical; whether to include main effects in the model
use_irlba	depricated. Use partial_decomp instead

Value

An S3 object of class 1svd which is a list with the following components:

mu	the main effects	
A	a k-dimentional orthogonal matrix with the scaled left singular vectors	
В	a k-dimentional orthonormal matrix with the right singular vectors	
iters	number of iterations required for convergence	
loss_trace	the trace of the average negative log likelihood of the algorithm. Should be non-increasing	
prop_deviance_expl		
the proportion of deviance explained by this model. If main_effects = TRU the null model is just the main effects, otherwise the null model estimates 0 all natural parameters.		

References

de Leeuw, Jan, 2006. Principal component analysis of binary data by iterated singular value decomposition. Computational Statistics & Data Analysis 50 (1), 21–39.

Collins, M., Dasgupta, S., & Schapire, R. E., 2001. A generalization of principal components analysis to the exponential family. In NIPS, 617–624.

```
# construct a low rank matrix in the logit scale
rows = 100
cols = 10
set.seed(1)
mat_logit = outer(rnorm(rows), rnorm(cols))

# generate a binary matrix
mat = (matrix(runif(rows * cols), rows, cols) <= inv.logit.mat(mat_logit)) * 1.0

# run logistic SVD on it
lsvd = logisticSVD(mat, k = 1, main_effects = FALSE, partial_decomp = FALSE)

# Logistic SVD likely does a better job finding latent features
# than standard SVD
plot(svd(mat_logit)$u[, 1], lsvd$A[, 1])
plot(svd(mat_logit)$u[, 1], svd(mat)$u[, 1])</pre>
```

14 plot.clpca

Description

Calculate the Bernoulli log likelihood of matrix

Usage

```
log_like_Bernoulli(x, theta, q)
```

Arguments

x	matrix with all binary entries
theta	estimated natural parameters with same dimensions as x
q	instead of x, you can input matrix q which is -1 if $x = 0$, 1 if $x = 1$, and 0 if is.na(x)

plot.clpca

Plot convex logistic PCA

Description

Plots the results of a convex logistic PCA

Usage

```
## S3 method for class 'clpca'
plot(x, type = c("trace", "loadings", "scores"), ...)
```

Arguments

X	convex logistic PCA object
type	the type of plot type = "trace" plots the algorithms progress by iteration, type = "loadings" plots the first 2 PC loadings, type = "scores" plots the first 2 PC scores
	Additional arguments

plot.cv.lpca 15

Examples

```
# construct a low rank matrix in the logit scale
rows = 100
cols = 10
set.seed(1)
mat_logit = outer(rnorm(rows), rnorm(cols))

# generate a binary matrix
mat = (matrix(runif(rows * cols), rows, cols) <= inv.logit.mat(mat_logit)) * 1.0

# run convex logistic PCA on it
clpca = convexLogisticPCA(mat, k = 2, m = 4, main_effects = FALSE)

## Not run:
plot(clpca)

## End(Not run)</pre>
```

plot.cv.lpca

Plot CV for logistic PCA

Description

Plot cross validation results logistic PCA

Usage

```
## S3 method for class 'cv.lpca'
plot(x, ...)
```

Arguments

x a cv.lpca object... Additional arguments

```
# construct a low rank matrix in the logit scale
rows = 100
cols = 10
set.seed(1)
mat_logit = outer(rnorm(rows), rnorm(cols))

# generate a binary matrix
mat = (matrix(runif(rows * cols), rows, cols) <= inv.logit.mat(mat_logit)) * 1.0

## Not run:
negloglikes = cv.lpca(dat, ks = 1:9, ms = 3:6)
plot(negloglikes)</pre>
```

16 plot.lpca

```
## End(Not run)
```

plot.lpca

Plot logistic PCA

Description

Plots the results of a logistic PCA

Usage

```
## S3 method for class 'lpca'
plot(x, type = c("trace", "loadings", "scores"), ...)
```

Arguments

```
    k
    type
    the type of plot type = "trace" plots the algorithms progress by iteration, type
    = "loadings" plots the first 2 principal component loadings, type = "scores"
    plots the loadings first 2 principal component scores
    Additional arguments
```

```
# construct a low rank matrix in the logit scale
rows = 100
cols = 10
set.seed(1)
mat_logit = outer(rnorm(rows), rnorm(cols))

# generate a binary matrix
mat = (matrix(runif(rows * cols), rows, cols) <= inv.logit.mat(mat_logit)) * 1.0

# run logistic PCA on it
lpca = logisticPCA(mat, k = 2, m = 4, main_effects = FALSE)

## Not run:
plot(lpca)

## End(Not run)</pre>
```

plot.lsvd 17

plot.lsvd

Plot logistic SVD

Description

Plots the results of a logistic SVD

Usage

```
## S3 method for class 'lsvd'
plot(x, type = c("trace", "loadings", "scores"), ...)
```

Arguments

```
    k
    type
    the type of plot type = "trace" plots the algorithms progress by iteration, type
    = "loadings" plots the first 2 principal component loadings, type = "scores"
    plots the loadings first 2 principal component scores
    Additional arguments
```

Examples

```
# construct a low rank matrix in the logit scale
rows = 100
cols = 10
set.seed(1)
mat_logit = outer(rnorm(rows), rnorm(cols))

# generate a binary matrix
mat = (matrix(runif(rows * cols), rows, cols) <= inv.logit.mat(mat_logit)) * 1.0

# run logistic SVD on it
lsvd = logisticSVD(mat, k = 2, main_effects = FALSE, partial_decomp = FALSE)

## Not run:
plot(lsvd)

## End(Not run)</pre>
```

predict.clpca

Predict Convex Logistic PCA scores or reconstruction on new data

Description

Predict Convex Logistic PCA scores or reconstruction on new data

18 predict.lpca

Usage

```
## S3 method for class 'clpca'
predict(object, newdata, type = c("PCs", "link", "response"), ...)
```

Arguments

object convex logistic PCA object

newdata matrix with all binary entries. If missing, will use the data that object was fit

on

type the type of fitting required. type = "PCs" gives the PC scores, type = "link"

gives matrix on the logit scale and type = "response" gives matrix on the prob-

ability scale

... Additional arguments

Examples

```
# construct a low rank matrices in the logit scale
rows = 100
cols = 10
set.seed(1)
loadings = rnorm(cols)
mat_logit = outer(rnorm(rows), loadings)
mat_logit_new = outer(rnorm(rows), loadings)

# convert to a binary matrix
mat = (matrix(runif(rows * cols), rows, cols) <= inv.logit.mat(mat_logit)) * 1.0
mat_new = (matrix(runif(rows * cols), rows, cols) <= inv.logit.mat(mat_logit_new)) * 1.0

# run logistic PCA on it
clpca = convexLogisticPCA(mat, k = 1, m = 4, main_effects = FALSE)

PCs = predict(clpca, mat_new)</pre>
```

predict.lpca

Predict Logistic PCA scores or reconstruction on new data

Description

Predict Logistic PCA scores or reconstruction on new data

Usage

```
## S3 method for class 'lpca'
predict(object, newdata, type = c("PCs", "link", "response"), ...)
```

predict.lsvd 19

Arguments

object logistic PCA object

newdata matrix with all binary entries. If missing, will use the data that object was fit on

type the type of fitting required. type = "PCs" gives the PC scores, type = "link" gives matrix on the logit scale and type = "response" gives matrix on the probability scale

... Additional arguments

Examples

```
# construct a low rank matrices in the logit scale
rows = 100
cols = 10
set.seed(1)
loadings = rnorm(cols)
mat_logit = outer(rnorm(rows), loadings)
mat_logit_new = outer(rnorm(rows), loadings)

# convert to a binary matrix
mat = (matrix(runif(rows * cols), rows, cols) <= inv.logit.mat(mat_logit)) * 1.0
mat_new = (matrix(runif(rows * cols), rows, cols) <= inv.logit.mat(mat_logit_new)) * 1.0

# run logistic PCA on it
lpca = logisticPCA(mat, k = 1, m = 4, main_effects = FALSE)

PCs = predict(lpca, mat_new)</pre>
```

predict.lsvd

Predict Logistic SVD left singular values or reconstruction on new data

Description

Predict Logistic SVD left singular values or reconstruction on new data

Usage

```
## S3 method for class 'lsvd'
predict(
  object,
  newdata,
  quiet = TRUE,
  max_iters = 1000,
  conv_criteria = 1e-05,
  random_start = FALSE,
  start_A,
```

20 predict.lsvd

```
type = c("PCs", "link", "response"),
...
)
```

Arguments

object logistic SVD object

newdata matrix with all binary entries. If missing, will use the data that object was fit

on

quiet logical; whether the calculation should give feedback

max_iters number of maximum iterations

conv_criteria convergence criteria. The difference between average deviance in successive

iterations

random_start logical; whether to randomly inititalize the parameters. If FALSE, algorithm

implicitly starts A with 0 matrix

start_A starting value for the left singular vectors

type the type of fitting required. type = "PCs" gives the left singular vectors, type =

"link" gives matrix on the logit scale and type = "response" gives matrix on

the probability scale

. . . Additional arguments

Details

Minimizes binomial deviance for new data by finding the optimal left singular vector matrix (A), given B and mu. Assumes the columns of the right singular vector matrix (B) are orthonormal.

```
# construct a low rank matrices in the logit scale
rows = 100
cols = 10
set.seed(1)
loadings = rnorm(cols)
mat_logit = outer(rnorm(rows), loadings)
mat_logit_new = outer(rnorm(rows), loadings)

# convert to a binary matrix
mat = (matrix(runif(rows * cols), rows, cols) <= inv.logit.mat(mat_logit)) * 1.0
mat_new = (matrix(runif(rows * cols), rows, cols) <= inv.logit.mat(mat_logit_new)) * 1.0

# run logistic PCA on it
lsvd = logisticSVD(mat, k = 1, main_effects = FALSE, partial_decomp = FALSE)

A_new = predict(lsvd, mat_new)</pre>
```

project.Fantope 21

project.Fantope Project onto the Fantope	project.Fantope	Project onto the Fantope	
--	-----------------	--------------------------	--

Description

Project a symmetric matrix onto the convex set of the rank k Fantope

Usage

```
project.Fantope(x, k, partial_decomp = FALSE)
```

Arguments

x a symmetric matrix

k the rank of the Fantope desired

partial_decomp logical; if TRUE, the function uses the RSpectra package to quickly calculate the

eigendecomposition when ncol(x) is large and k is small

Value

H a rank k Fantope matrix

U a k-dimentional orthonormal matrix with the first k eigenvectors of H

rank the rank of the Fantope matrix H

Index

```
* datasets
    house_votes84, 9
* package
    logisticPCA-package, 2
convexLogisticPCA, 2
cv.clpca, 4
cv.lpca, 5
cv.1svd, 6
fitted.lpca, 7
fitted.lsvd, 8
house_votes84, 9
{\tt inv.logit.mat}, \textcolor{red}{9}
log_like_Bernoulli, 14
logisticPCA, 10
logisticPCA-package, 2
{\tt logisticSVD}, \textcolor{red}{12}
plot.clpca, 14
plot.cv.lpca, 15
plot.lpca, 16
plot.lsvd, 17
predict.clpca, 17
predict.lpca, 18
predict.lsvd, 19
\verb|project.Fantope|, 21|
```